Erste Schritte in *Mathematica*

■ Direktes Rechnen

Direkte Eingabe der Rechnung, eingebaute Funktionen groß geschrieben, Argument mit eckigen Klammern:

```
In[1]:= 3 (1 + 1) Sin[3.1415] / 34
Out[1]= 0.0000163506
```

Das Prozent–Zeichen repräsentiert das letzte Ergebnis:

```
In[2]:= %^2
Out[2]= 2.67343 \times 10^{-10}
```

Kaum Beschränkungen der Rechengenauigkeit:

```
In[3]:= 10000!
```

■ Symbolische Ausgabe

Wenn das Ergebnis analytisch ausgegeben werden kann, wird es nicht numerisch berechnet

```
In[4]:= \frac{\text{Sin}[\pi/4]}{2}
Out[4]= \frac{1}{2 \sqrt{2}}
```

■ Numerische Ausgabe

Die Funktion N[...] berechnet den numerischen Wert eines Ausdrucks, die Angabe einer Kommazahl reicht ebenfalls:
In[5]:= \[N\left(\frac{\sin[\pi/4]}{2}\right) \]
\[
\frac{\sin[\pi/4]}{2.0} \quad N[\pi, 1000]
\]
Out[5]= 0.353553
Out[6]= 0.353553

Out[7]= 3.1415926535897932384626433832797502884197169399375105820897494459230787164062862089:
98628034825342117067982148086513282306647093844609550582231725359408128481117450:
284102701935211055596464622948954930381966428810197565659334461284756482337867316:
527120190914564856692346034861045432664821339360726024914212737245870066063155881:
74881520292096282922540917153645367892590360011330530458820466921384146951941511609:
4330572703657595195309218611738193261179310511584807446237996274956735188575272:
4891227931830119491298336733624406566430860213949463952247371907021798609437027:
70539217176293176752384674818467669405132000568127145263560827785771342757789609:
17363717872146844090122495343014654958537105079227968925892354201995611212902196:
08640344181598136297747713099605187072113499999983729780499950597317328160963185:
950244594534690830264252230825334685035261931188171010003137838752886587533208:
3814206171776691473035982534904287554673115956286388235378759375195778185778053:
2171226806613001927876611195909216420199

Funktionen können mit "///" auch nachgestellt werden:

In[8]:= \[\frac{\sin[\pi/4]}{2} \] // N
Out[8]= 0.353553

■ Variablen und Funktionen

Variablen werden mit "=" definiert. Ein ";" am Ende unterdrückt die Ausgabe. Wird eine Variable mit "=" definiert, wird die Ausgabe verzögert, d.h. der folgende Ausdruck wird noch nicht sofort ausgewertet, sondern erst beim Verwenden der Variable. Definierte Variablen sollten mit ClearAll wieder gelöscht werden.

\[x = 4711; \]
\[x; \]
\[y := x^2; \]
\[z = x^3; \]
\[y \]
\[x = 1; \]
\[z \]
\[ClearAll[x, y, z] \]
Out[10]= 4711
Out[13]= 22193521
Out[14]= 22193521
Out[16]= 22193521
Out[17]= 1

Funktionen werden mit ":=“ definiert. Das Argument wird mit nachgestelltem ":_" definiert:
In[19]:= \[F[x_]:= x^2\]
\[F[2]\]
\[F[4]\]
ClearAll[F]

Out[20]= 4
Out[21]= 16

Listen und Vektoren

Listen werden mit \{\ldots,\ldots,\ldots\} definiert. Mit doppelten eckigen Klammern werden Elemente herausgegriffen. In Rechnungen bedeuten Listen, das die Rechnung mit jedem Element durchgeführt wird.

In[23]:= \[daten = \{1.0, 2.0, 3.0, 4.0, 5.0\}\]
\[daten[[4]]\]
\((5 + daten)^2\]

Out[23]= \{1., 2., 3., 4., 5.\}
Out[25]= \{36., 49., 64., 81., 100.\}

Listen können als Vektoren verwendet werden, Listen von Listen als Matrizen. Die Funktion MatrixForm[\ldots] liefert Vektor-Darstellung:

In[26]:= \[a = \{1, 2, 3\}\times\{3, 4, 5\}\]; \[a //\text{MatrixForm}\]
\[M = \{\{1, 2, 3\}, \{4, 5, 6\}, \{7, 8, 9\}\}\]; \[M //\text{MatrixForm}\]
\[M.a //\text{MatrixForm}\]

Out[26]//MatrixForm=
\[
\begin{pmatrix}
3 \\
8 \\
15
\end{pmatrix}
\]
Out[27]//MatrixForm=
\[
\begin{pmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{pmatrix}
\]
Out[28]//MatrixForm=
\[
\begin{pmatrix}
64 \\
142 \\
220
\end{pmatrix}
\]

Graphische Ausgabe

Beispiele für graphische Ausgabe. Optionen werden mit "\rightarrow" angegeben. Mit "Options[\ldots]" Funktion können die verwendbaren Optionen ausgegeben werden.

In[29]:= \[Options[\text{Plot}]\]
\[\text{Plot}[\text{Sin}[x], \{x, 0, 2 \pi\}, \text{AxesLabel} \rightarrow \{"x/rad", \"sin(x)\"\}]\]
\[\text{ParametricPlot}[\{3 \text{Sin}[3t], 5 \text{Cos}[5t]\}, \{t, 0, 2 \pi\}]\]
\[\text{Plot3D}[\text{Sin}[xy], \{x, 0, 5\}, \{y, 0, 5\}]\]
\[\text{ListPlot}[\{(1, 2), (2, 3), (3, 2), (4, 2.5)\}, \text{PlotRange} \rightarrow \{(0, 5), (0, 5)\}]\]

\[\text{sin}(x)\]

Out[30]= -Graphics-

Out[31]= -Graphics-

Out[32]= -SurfaceGraphics-
Symbolische Rechnen

Solve[...] löst eine Gleichung (Angaben mit "==") nach einer Variable auf.

\[
\text{In[34]:=} \quad \text{Solve}[3 \, x^2 + 3 \, y + 1 = 0, \, x] \\
\text{Out[34]=} \quad \{\{x \to -\frac{\sqrt{-1 - 3 \, y}}{\sqrt{3}}\}, \{x \to \frac{\sqrt{-1 - 3 \, y}}{\sqrt{3}}\}\}
\]

Das Ergebnis ist eine Regel (Rule, mit Pfeilchen). Eine Regel kann mit \text{Replace[...]} zum Einsetzen verwendet werden.

\[
\text{In[35]:=} \quad \text{Replace}[x, \, x \to \frac{1}{6} \, (5 - \sqrt{13})] \\
\text{Out[35]=} \quad \frac{1}{6} \, (5 - \sqrt{13})
\]

Mit \text{Simplify[...]} werden Ausdrücke vereinfacht.

\[
\text{In[36]:=} \quad \text{Simplify}[\sin(\alpha) \, \cos(\beta) + \sin(\beta) \, \cos(\alpha)] \\
\text{Out[36]=} \quad \sin(\alpha + \beta)
\]

Integrieren und Differenzieren
Numerische Lösung

Gleichungen, Integrale, etc., die sich nicht analytisch lösen lassen, können numerisch berechnet werden:

\begin{align*}
\text{In[42]:=} & \quad \text{NSolve}[x^5 + 3 \cdot x + 1 = 0, x] \\
\text{Out[42]} & = \{x \to -1, 1\}
\end{align*}