Studies for a Crystal Ball TPC

Martin Wolfes
Institut für Kernphysik
Johannes Gutenberg Universität Mainz

Wed. September 7, 2011
Outline

Introduction

Time Projection Chambers

Studies
 The Karlsruhe Prototype
 Simulation Studies

Conclusion and Outlook
Outline

Introduction

Time Projection Chambers

Studies
 The Karlsruhe Prototype
 Simulation Studies

Conclusion and Outlook
Current Setup at A2 (Inner detectors)

Crystal Ball

PID
- Particle Identification Detector
 - plastic scintillator
 - 24 strips each covering 15°
 - energy loss based particle identification

MWPCs
- 2 hits per track
- Spatial resolution $\sim O(mm)$

Target

Beam

MWPC: Multi Wire Proportional Chamber
Photon Induced Meson Production

For η' production we need

- high photon energy
- high event rates
Photon Induced Meson Production

For η' production we need

- high photon energy
- high event rates

Problem
MWPCs cannot handle the event rates needed!

A possible solution
Replace current track detection by a GEM driven TPC.
Outline

Introduction

Time Projection Chambers

Studies
 The Karlsruhe Prototype
 Simulation Studies

Conclusion and Outlook
Gaseous TPC

How to get 3D information

- Charged Particles cause ionisation.
- Primary charge drifts in homogenic electric field.
- x and y coordinates: position on readout plane.
- By measuring the drift time we get the z coordinate.
Gaseous TPC

Limiting factors

▶ Diffusion limits the spatial resolution.
▶ Drift velocity and diffusion depends on gas mixture.
▶ Ionisation rate for MIPs is $\sim 10 \frac{e^{-}}{mm}$, Gas amplification is needed.
Gas Electron Multiplier

- Kapton foil with conducting layers (Cu) on top and bottom.
- Strong electric field $\sim 10^5 \frac{V}{cm}$ within holes yields gas amplification.
Gas Electron Multiplier

- Field geometry suppresses ion drift back.
- Gas gain $\sim 10 - 100$ per foil.
Outline

Introduction

Time Projection Chambers

Studies
 The Karlsruhe Prototype
 Simulation Studies

Conclusion and Outlook
The Karlsruhe Prototype

Test with cosmics for:
- Resolution studies
- Develop and test reconstruction software
- Gaining experience
Measurements: Test runs with Cosmics

Cluster charge vs. Charge [ADC Counts]
Measurements: Test runs with Cosmics
Measurements: Test runs with Cosmics

Trackfinder: Calculates the principal axes of inertia.
A Problem (to be) solved?
A Problem (to be) solved?

Cluster counts

PMT test

[Graph showing cluster counts over time]
A Problem (to be) solved?
A Problem (to be) solved?
Parameter Driven Fast Simulation

Purpose

- Flexible simulation for fast estimation of resolutions depending on different pad geometries
- Test and develop reconstruction software with simulated signals

The spatial resolution depends on

- Length of drift volume and gas within the chamber: longitudinal and transversal diffusion
- Geometry of pad planes for x and y direction
- Readout electronics: sampling rate, signal response, etc.
Parameter Driven Fast Simulation

Purpose

- Flexible simulation for fast estimation of resolutions depending on different pad geometries
- Test and develop reconstruction software with simulated signals

The spatial resolution depends on

- Length of drift volume and gas within the chamber: longitudinal and transversal diffusion
- Geometry of pad planes for x and y direction
- Readout electronics: sampling rate, signal response, etc. . . .
Gas

- Gas mixture: Drift velocity and diffusion via MAGBOLZ

Parameters

- Drift velocity
- Transverse diffusion
- Longitudinal diffusion

Gas mixture: Drift velocity and diffusion via MAGBOLZ
Parameters

Gas

- Gas mixture: Drift velocity and diffusion via MAGBOLZ
- Ionisation rate n_T for MIPs
- Probability for cluster sizes
Parameters

Gas
- Gas mixture: Drift velocity and diffusion via MAGBOLZ
- Ionisation rate n_T for MIPs
- Probability for cluster sizes

Geometry
- Drift length, active volume defined via pad plane
- GEMS: Position and amplification
- Track parameters

Voltages
Working Principle

- Generate primary electrons
- Calculate σ_T, σ_L from z-positions
 \[\sigma_{T,L} = D_{T,L}(E) \sqrt{z} \]
- Recursively generate electrons and diffuse within and between GEMS
- Time binning depending on sampling frequency
The Crystal Ball TPC

Possible layouts for drift volumes
Results: Typical track in Crystal Ball

Simulation:

- 3 GEMs with gas gain
 \(G \sim 5800 \)
- \(r_{in} = 66 \text{ mm}, \)
 \(r_{out} = 145 \text{ mm} \)
- \(l_{drift} = 400 \text{ mm} \)

- Binned in a radial symmetric readout plane with 12 tracks
- 2094 pads with an area of \(25 \text{ mm}^2 \) per pad
- Time integrated signal
Results: Typical track in Crystal Ball

CB TPC

- Simulation:
 - 3 GEMs with gas gain $G \sim 5800$
 - $r_{in} = 66$ mm, $r_{out} = 145$ mm
 - $l_{drift} = 400$ mm
 - Binned in a radial symmetric readout plane with 12 tracks
 - 2094 pads with an area of 25 mm^2 per pad
 - Time integrated signal
Results: Broadening due to Diffusion

Transversal Diffusion

Track: $z = 200\text{mm}$ length = 79 mm

Gaussian fit: $\sigma = (1.8983 \pm 0.0005) \text{mm}$
Results: Time binning

Sampling frequency: 19.66 MHz
Outline

Introduction

Time Projection Chambers

Studies
 The Karlsruhe Prototype
 Simulation Studies

Conclusion and Outlook
Conclusion

A GEM driven TPC within the Crystal Ball Detector yields:

▶ A reliable track detection system at high event rates.
▶ More Points along the tracks \implies better track reconstruction.
▶ To be studied: Contribution to PID via $\frac{dE}{dx}$?
Conclusion

A GEM driven TPC within the Crystal Ball Detector yields:

- A reliable track detection system at high event rates.
- More Points along the tracks \rightarrow better track reconstruction.
- To be studied: Contribution to PID via $\frac{dE}{dx}$?

(STAR-Experiment)
Conclusion
A GEM driven TPC within the Crystal Ball Detector yields:

▶ A reliable track detection system at high event rates.
▶ More Points along the tracks \Rightarrow better track reconstruction.
▶ To be studied: Contribution to PID via $\frac{dE}{dx}$?

Outlook
There is still work to be done...

▶ More accurate simulation for GEM contribution.
▶ Include Signal response in the simulation.
▶ Compare different Pad Geometries concerning resolutions
▶ Develop new readout system for CB TPC.
▶ Track finder for high event rate.
▶ Build new chamber.
Conclusion
A GEM driven TPC within the Crystal Ball Detector yields:

▶ A reliable track detection system at high event rates.
▶ More Points along the tracks \Rightarrow better track reconstruction.
▶ To be studied: Contribution to PID via $\frac{dE}{dx}$?

Outlook
There is still work to be done...

▶ More accurate simulation for GEM contribution.
▶ Include signal response in the simulation.
▶ Compare different Pad Geometries concerning resolutions
▶ Develop new readout system for CB TPC.
▶ Track finder for high event rate.
▶ Build new chamber.

Thank you for your attention!